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The finite elentent method is one ot" the methods widely applied for predicting vibration in 

mechanical structures. In this paper, the effect of the mesh size of the finite element model on 

the accuracy of the numerical solutions of the structural vibration problems is investigated with 

particular focus on obtaining the optimal mesh size with respect to the solution accuracy and 

computational cost. The vibration response parameters of the natural frequency, modal density, 

and driving point mobility are discussed. For accurate driving point mobility calculation, the 

decay method is employed to experimentally determine the internal damping. A unilbrm plate 

simply supported at four corners is examined in detail, in which the response parameters are 

calculated by constructing finite element models with different mesh sizes. The accuracy of the 

finite element solutions of these parameters is cvaluated by comparing with the analytical results 

as well as estimations based on the statistical energy analysis, or if not available, by testing the 

numerical convergence. As the mesh size becomes smaller than one quarter of the wavelength of 

the highest frequency of interest, the solution accuracy improvement is found to be negligible, 

while the computational cost rapidly increases. For mechanical structures, the finite element 

analysis with the mesh size of the order of quarter wavelength, combined with the use of the 

decay method lbr obtaining internal damping, is Iound to provide satisfactory predictions for 

vibration responses. 
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I. Introduction 

The finite element method is one of the numer- 

ical simulation techniques widely used tbr pre- 

dicting structural vibration. In the finite element 

analysis, the solution accuracy is significantly 
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intlt, enced by the element size. It is generally 

believed that the accuracy can be improved by 

generating successively finer element during the 

modeling process. However, the computational 

load increases proportionally as the element size 

is reduced, and the numerical round of fe r ro rcan  

pose a serious problem (Cremer et al., 1973; 

Irwin and Graf, 1979; Fahy, 1985). Meanwhile, 

software solvers for noise and vibration applica- 

tions that are commercially available generally 

recommend mesh sizes in the order of" 1/3, 1//4, or 

1/6 o1" the wavelength of interest, perhaps based 

on the engineering intuition of the code develo- 

pers (see Labor, 1996 for a general discussion). 
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Therefore. selecting a proper mesh size can be 

critical in obtaining accurate solutions with 

minimal numerical round-off errors and accept- 

able computational costs. Recent research works 

have touched on the issue of the mesh size in 

vibration analysis of mechanical structures. For 

instance, Jiang and Olson (1994) used different 

grid spacing to obtain flee vibration responses of 

shell and curved beam structures. Ramesh and 

Ganesan (1994) investigated FEM modeling of 

damped plates for various boundary conditions, 

while Ahmadian, Gladwell and Ismail (1994) 

looked into the combined use of the FEM and 

modal data. 

For cases in which the modal analysis cannot 

be readily carried out, the statistical energy an- 

alysis (SEA) provides another alternative for 

obtaining estimates of the structural vibration and 

noise responses. The statistical energy analysis 

method is based on the assumption that the level 

of vibration energy for a given frequency range is 

directly proportional to the number vibration 

modes existing in the frequency range. When 

sufficiently large number of modes is present, the 

SEA can furnish fairly accurate estimates of the 

vibration responses. In this paper, it will be used 

to provide estimates that can be compared with 

the numerical results of the finite element models. 

A general discussion of the theory can be lbund in 

Lyon (1975), and Burroughs and Fischer (1997), 

while experimental means of obtaining accurate 

modal density and damping tbr plates for use in 

the SEA was investigated by Clarkson and Pope 

(11981). 

In this study, the effect of the mesh size on the 

numerical solution of mechanical structures for 

vibration analysis purpose is systematically in- 

vestigated. The vibration response parameters of 

the natural frequency, modal density, and driving 

point mobility are discussed for unilbrm beams 

and plates. For the accurate calculation of the 

driving point mobility, accurate damping para- 
meters are needed, and thus the decay method is 

used to experimentally determine the internal 

damping for use in the numerical simulations. 

For comparison with numerical results of the 

finite element models, the analytical expressions 

for the modal response parameters are obtained 

whenever possible, and if not possible, numerical 

estimates based on the SEA are calculated. Since 

the modal density and mobility calculations are 

closely related with sound radiation, the results 

obtained here applies to structure-bourn noise as 

well as vibration. 

2. V i b r a t i o n  R e s p o n s e  P a r a m e t e r s  

2.1 Modal analysis of a plate 
The vibrations in mechanical structures are 

usually generated by excitations from the external 

sources. For a two-dimensional plate structure, 

the equation governing the vertical motion w is 

given by 

D~74w+pk ~ W = o  (1) 
3t 2 

where V : ~ x 4 + - - 3 x Z a y  2 ~v 4 and D, E,  h, 

p, ~ denote the flcxural rigidity, Young's mo- 

dulus, plate thickness, density, and Poisson's ra- 

tio. respectively. For sinusoidal motion of the 

plate, the solution of Eq. (1) tbr the wave pro- 

pagating in x-direction is given by 

w =  ( A e ~ "  + B e - h ~  + Ce-~h~ + De  jk~) e ~t  (2a) 

with 

where kb denotes the wave number of the bending 

wave. The first two terms in Eq. (2a) represent a 

near-field motion that does not contribute to 

wave propagation, while the remaining two terms 

represent a bending wave propagating in space. 

The vibration energy is predominantly transmitt- 

ed in the form of the bending wave, with the 

phase velocity given by (sce Lyon, 1987 lbr a 

general discussion) 

Cb = VoJ-/c- C~ (3) 

where Ct denotes the propagation speed of the 

longitudinal wave given by ( E / p ( I  - t ,2) ) ~, and 

K is a parameter related to the structural stillness 

for which a plate of unitbrm thickness h is given 

by h / f l 2 .  From the above equation, the phase 
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Fig. 2 Two-dimensional wave number lattice for a 
uniform plate 

velocity is seen to be dependent on the frequency, 

and the propagation waveform is dispersed. The 

dispersion property greatly influences the natural 

frequency and the number of modes needed to 

store vibration energy. 

The main parameters related to the vibration 

transmission are the modal density and mobility. 

For a rectangular plate of length a and width b, 

which is simply supported at four corners as 

shown in Fig. 1, the mode shape satisfying Eq. 

(I) can be given by (see Leissa, 1969) 

~mn =Amn sin km s in  kny 
(4) k m x  mr m = ~ ,  k , , = ~  (m,  n = l ,  2, 3, ...) 

where km and kn denote the wave numbers in the 

x-and  the y-directions, respectively. The natural 

frequencies are given by 

, o =  + e . )  • + k >  i5) 

Comparing Eqs. (3) and (5), the following rela- 

tionship can be obtained 

2 _ _  2 2 k - - km+k~  (6) 

Eq. (6) for the resonant modes can be represented 

graphically by a 2-dimensional lattice as shown 

in Fig. 2. In the figure, the interval between the 

adjacent modes for km and k,, are 7r/a and n /b ,  

respectively, with each lattice point representing a 

resonance mode. The approximate number of the 

resonant modes up to a wave number k is given 

by dividing a quarter of the total area of the circle 

by the area per mode: 

N ( k )  -- k2A (7) 
4re 

where A denotes the surface area of the plate. The 

above equation can be expressed as a function of 

the frequency in the form of 

A ' f  
N ( f ) -  2.~7~. ~7 ' (8) 

By taking the derivative of Eq. (8), the rate of 

change of the mode count with respect to the 

frequency can be expressed as 

n ( f )  - d N  A 
d f  -- 2. K" Ct (9) 

Eq. (9) represents the modal density of the two- 

dimensional plate structure. Taking the inverse 

of Eq. (9) yields the mean frequency separation 

between the adjacent modes as given by 

- -  1 _ t ' C ~  
8 f -  n ( f )  , / 3 " A  (10) 

The above equation shows that the modal density 

for two-dimensional plates is independent of the 

frequency, is determined by the geometry (surface 

area and thickness), and exhibits a constant mean 

separation between the adjacent modes in the 
frequency domain. 

On the other hand, lbr one-dimensional beam 

structures, the modal density is given by (Lyon, 
1987) 

L _ L ( l l )  
n ( f ) -  Cb ff2rc. K . f .  Cz 

where L denotes the beam length. For the ben- 

ding wave, the modal density in one-dimensional 
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structures varies with the frequency, and the sep- 

aration between any two adjacent modes in the 

frequency domain is proportional to 4r f ,  in con- 

trast to a uniform frequency separation lbund 

in two-dimensional plate structures. The modal 

density of plate and beam are compared in Fig. 3. 

2.2 Driving point mobility 
The transfer function provides a measure of the 

system dynamic response to external excitation. 

The mobility is defined as the ratio of the system 

velocity response to the excitation force. In the 

case of a one-degree-of-freedom system, the mo- 

bility can be expressed by 

M ( w )  _ j w  I 
M (cog-coz).q-jcooco77 (12) 

where COo, 7?, and co denote the natural frequency, 

the loss factor, and the excitation frequency, re- 

spectively. 

Continuous structures such as plates are best 

modeled as multi-degree-of-freedom systems, and 

the responses can be expressed as linear super- 

positions of one-degree-of-freedom systems. The 

mobility can be expressed by (Lyon, 1987) 

_ jco ¢. (xs) ¢. (x0) 
M(co) - - ~ -  ~ co~_ coz +jco.co77 (13) 

where ~bn (Xs) and fin (:Co) denote the mode shapes 

of the excitation point and measuring point, re- 

spectively. The driving point mobility refers to the 
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mobility type in which the excitation point and 

measuring point coincide. For a uniform plate, 

the mean value of the real part of the driving 

point mobility within a given frequency band can 

be obtained by the following relationship between 

the excitation energy and the energy dissipated 

due to the internal damping of the plate (Lyon, 

1987) : 

n ( f )  1 
M , ~ -  4 . M  - 8"K" C t ' p s  (1411 

where M and cos denote the total mass and mass 

density per unit volume of the plate, respectively. 

Since the real part of the driving point mobility 

represents the magnitude of the energy input to 

the structure, it is always positive. The real part of 

the driving point mobility of the above equation 

is directly proportional to the modal density, 

which implies that it is related to the number of 

modes that can absorb the vibration energy from 

the excitation source. 

3. S i m u l a t i o n  R e s u l t s  

3.1 Plate model 
For the present study, several finite element 

models with different element sizes are construct- 

ed for a homogeneous, isotropic plate. The pri- 

mary locus is placed on obtaining the optimal 

element size for accurate estimation of the vibra- 

tion response parameters while economizing on 

the computational effort. The rectangular plate is 

made of aluminum and simply supported at four 

corners, as shown in Fig. I. The material proper- 

ties and dimensions are specified in Table 1. 

Commercially available FEM software AN- 

SYS is used for modeling and analysis. The plate 

is modeled by using four-node shell elements. 

The modal analysis and the frequency response 

analysis are performed. The highest frequency 

of interest is set by 1,414 Hz, which is the upper 

Table 1 Specifications of a uniform plate 

Young's 
Modulus Density Poisson's a b t 

(Gpa) (kg/ma) ratio (mm) (mm) (mm) 

71 2,700 0.33 1,000 600 6 



1152 Woonkyung M. Kim, Jeung Tae Kim and Jung Soo Kim 

Table 2 Natural frequencies (% error) for various mesh sizes 
(,~ : wavelength corresponding to the highest frequency of interest ; frequency in hertz 

~ h Size 

Mode number 

Exact 
Value 

175.64 
(1.88) 

177.74 
(0.71) 

178.63 
(0.21) 

178.84 
(0.09) 

178.90 
(0.06) 

178.94 
(0.03) 

A A/2 A/4 A/6 A/8 A/10 

54.93 55.58 55.77 55.81 55.82 55.83 
1(1, 1) (1.6) (0.44) (0.11) (0.04) (0.02) (0.01) 55.83 

97.00 99.26 99.93 100.07 100.11 100.13 
2(2, I) 100.17 (3.17) (0.92) (0.24) (0.06) (o.06) (o.04) 

166.42 171.94 173.49 173.83 173.92 173.98 
3(3, 1) 174.07 (4.40) (1.22) (0.33) (0.09) (0.09) (0.05) 

4(1, 2) 179.00 

1600 

E 
c~1200 

800 

400 

0 

Fig. 4 
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+node / 

X L/2 g/4 L/6 L/8 X/10 

Mesh Size 

Total element and node count for different 
mesh sizes (,~: wavelength corresponding to 

the highest frequency of interest) 

l imit for the octave band centered at 1,000 Hz. 

Once the highest frequency is known,  the corre- 

sponding wavelength of  the bending wave can be 

readily calculated according to Eq. (2b). For  the 

plate at hand, the wavelength of  the bending wave 

is calculated to be 0.2 m, and it will serve as the 

basis for selecting the mesh size. The  total number  

of  the elements and nodes for various mesh sizes 

are shown in Fig. 4. The element and node count  

increases geometrical ly with the mesh size re- 

duction. It can be easily surmised that the com- 

putat ional  load increases in a similar  manner  as 

the mesh size becomes smaller. 

3.2 Ef fec t  on the natura l  frequency  

For  a plate simply supported at four corners, 

the natural  frequencies can be analytical ly ob- 

tained. The exact natural  frequencies for the first 
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Combined error in the first four natural fre- 

quencies (,~ : wavelength corresponding to the 
highest frequency of interest) 

four modes calculated are 55.83 Hz, 100.17 Hz, 

174.07Hz, and 179.00Hz. The corresponding 

modal  indices are (1, 1), (2, 1) (3, 1), and (I, 2), 

respectively. 

In the present investigation, the modal  analysis 

based on the finite element model  is carried out 

while successively reducing the mesh size. The  
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first four natural  frequencies are computed for 60 

each mesh size, and the numerical  solutions are 

compared with the exact values. The first four 5o 

natural frequencies computed for different mesh E 40 
sizes are listed in Table  2. The corresponding z O 

percentage errors are enclosed in parenthesis as o ~ 30 
"13 

well. Figure  5 plots the percentage error in the o 
~: 20 

first natural  frequency as a function of  the mesh 

size. All of  the other  three modes show the similar  10 

trend, and the sum of the squared errors for the 

modes 1 through 4 for different mesh sizes are 0 

shown in Fig. 6. The errors of  all four modes 

decrease in direct propor t ion  to the mesh size 
Fig. 7 

reduction. For  the mesh size at the quarter  of  the 

wavelength, the errors for the tlrst four modes are 

reduced to 0.11~o, 0.24%, 0.33~o, and 0.21%, re- 

spectively. For  the mesh sizes smaller than the 

quarter  wavelength,  reductions in the errors are 

found to be negligible. 

3.3 Effect on the modal density 

The effect of  the mesh size on the mode count  

is investigated. For  each mesh size, the total num- 

ber of  modes within the frequency range up to 

1,414 Hz is computed and the results are com- 

pared with the analytically derived mode count  

of  38. The mode count for different mesh sizes 

are given in Fig. 7. The mode count  should 

approach the correct number as the mesh size 

becomes successively smaller. In this case, the 

mode count  reaches the correct number as the 

mesh size reaches the quarter wavelength. The 

mode count  of  48 is obtained by applying the 

statistical energy analysis (SEA) for the same 

frequency range. The error in this case is due to 

the inclusion of  a low frequency region for which 

the SEA cannot  be properly applied. An experi- 

mentally derived frequency response function 

underestimated the mode count,  perhaps due to 

over lapping of  the modes, yielding the mode 

count  of  only 27. Tota l  mode count  for different 

methods are plotted in Fig. 8. 

3.4 Effect on the driving point mobility 

The harmonic  response analysis is pertbrmed 

to estimate the mobil i ty  function at the driving 

point. The real part of  the driving point mobil i ty 

~ F E M  
52 

A M2 M4 M6 A/8 M 10 

Mesh Size 

Mode count lbr different mesh sizes (J :  

wavelength corresponding to the highest fre- 

quency of interest) 

I ~FEM 

' : ! ~ E x ~ a r l r n e n l  " - -  ~ A  . A 

/ /  
~ , , I  

Frequency [  Hz]  

Fig. 8 Total mode count for different methods 

is obtained by varying the frequency from 1 Hz to 

1,414 Hz with 1 Hz increment. According to Eq. 

(14) for a uniform plate, the real part of  the 

driving point mobil i ty is independent of  the ex- 

citation frequency. The mean mobil i ty value for 

each octave band is calculated. The magnitude of  

the excitation is set by unity. The excitation/ '  

measurement point is indicated in Fig. 1. 

The mobil i ty function can be accurately cal- 

culated if and only if a reliable estimate of  the 

structural damping is known. To obtain the in- 

ternal damping,  the decay method is applied 

here. An experimental  setup is shown in Fig. 9. 

Fo l lowing  the impact on the plate by the impact 

hammer,  band-pass  filtering is performed on the 

response signal lor each octave band, and the 

reverberat ion time required for the signal am- 

plitude to decay by 60dB is measured. The loss 

factor can be calculated for each octave band by 
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the following equation (Lyon, 1987) given by 

2.2 
~=fe"  TR (15) 

where fc and TR denote the center frequency of 

the given octave band and the reverberation time, 

respectively. A typical response decay curve is 

shown in Fig. 10, and the averaged loss factor 

Impact  
/ .  / I l a m m e r  

Accelerometer ~ .  / ' / ~ - ~ - ~ .  

Fig. 9 Experimental setup for measuring internal 
damping 
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Fig. 10 Response signal amplitude decay curve 
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Fig. 11 Loss factor  by octave bands 

value for each octave band is given in Fig. 11. 

It can be seen that the damping factor diminishes 

with the frequency increase. 

Although the analytical solution of the driving 

point mobility cannot be obtained, the numerical 

solutions, for instance, by the SEA method can 

be computed. As we have seen in the case of the 

modal density, however, the SEA results will 

contain significant errors, that is, strictly spea- 

king, the exact mobility results which can be 

used to verify the FEM results are not available. 

Therefore, the numerical convergence to a stea- 

dy-state value as the mesh size is successively 

reduced will be used as a criterion tbr accepting 

the results. 

The results are plotted in Fig 12. According 

to Eq. (14), the driving point mobility of the 

plate is characterized by a constant value that 

is proportional to the modal density and in- 

dependent of the excitation frequency. Therefore, 

the region in Fig. 12 exhibiting steady-state 

values, i.e., horizontal line segments, should cor- 

respond to the region of acceptable numerical 

solutions. For each octave band, the mean values 

of the real parts of the mobility functions for 

different mesh sizes are shown in Fig. 12. For all 

cases, the mean value for each octave band con- 

verges to a constant value as the mesh size is 

reduced. Once the mesh size has reached the 

quarter wavelength, the change in the mean value 

due to additional reductions in the mesh size 
becomes negligible. 

0.0025 
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0.0015 

E 0.001 v 

0.0005 
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+ 1 2 5 ~ z  

250Hz ! 
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Driving point mobility by octave bands for 
different mesh sizes (A: wavelength corre- 
sponding to the highest frequency of inter- 
est) 
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4. Conclusions 
vided by a grant from the Korean Science and 

Engineering Foundat ion (KOSEF).  

The purpose of the present investigation is to 

find an optimal mesh size in the finite element 

modeling of structures for predicting vibrational 

responses. The three vibration response para- 

meters of the natural frequency, modal density, 

and driving point mobility function of a two- 

dimensional plate structure are considered. While 

reducing the mesh size, the finite element solu- 

tions of the natural frequency and mode count are 

compared with the theoretical solutions. Since the 

theoretical results are not available, the mean 

value of the driving point mobility functions for 

each octave band is tested for the numerical con- 

vergence to a steady-state value. 

For  the natural frequency and modal density, 

the mesh size reduction generally leads to higher 

accuracy. As the mesh size gets smaller than one 

quarter of the wavelength of the highest frequency 

of  interest, however, the gain in the accuracy is 

found to be either negligible or non-existent. The 

mean driving point mobility also achieves con- 

vergence to a constant steady-state value as the 

mesh size reaches the quarter wavelength for all 

octave bands. 

For the mesh sizes smaller than the quarter 
wavelength, the improvement in the solution ac- 

curacy is negligible, while computational cost 

rapidly increases. In order to predict the vibra- 

tion characteristics of mechanical structures by 

applying the finite element method, therefore, it 

can be concluded that the mesh size equal to one 

quarter of the wavelength of the highest frequency 

of interest is optimal from the points of the 

solution accuracy and computational cost. 
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